长沙理工大学学报(自然科学版)
异构无人机群两级协同物流配送调度优化
CSTR:
作者:
作者单位:

(长沙理工大学 交通学院 ,湖南 长沙 410114)

作者简介:

通讯作者:

柳伍生(1976—)(ORCID:0000-0003-0679-7252),男,教授,主要从事交通运输与物流方面的研究。E-mail:lwusheng@163.com

中图分类号:

U692.3+2;[U8]

基金项目:

国家自然科学基金项目(61773077);教育部人文社科规划基金项目(23YJAZH089)


Optimization of two -level collaborative logistics distribution scheduling for heterogeneous unmanned aerial vehicle swarms
Author:
Affiliation:

(School of Transportation , Changsha University of Science & Technology , Changsha 410114, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】针对单一无人机 (unmanned aerial vehicle,UAV)配送中存在的续航短、载重小及地面交通制约等问题,为突破传统 “无人机 +车辆”协同模式的局限,提出一种全空域异构无人机群两级协同物流配送架构,旨在通过层级化资源调度优化来提升配送效率。【方法】构建以总飞行距离最小为目标的两级协同调度模型:大型运输无人机 (large transport unmanned aerial vehicle,l-UAV)负责长距离转运以及发射 /回收小型配送无人机(express unmanned aerial vehicle,e-UAV),e-UAV执行末端配送。设计三阶段混合启发式算法:动态质量约束聚类算法 K-means++ 划分客户点集群并确定发射点位置;改进蚁群算法 (ant colony optimization algorithm,ACO)优化 l-UAV路径;禁忌搜索算法 (tabu search algorithm,TS)规划 e-UAV配送路径。【结果】基于Solomon数据集的多组算例表明:“ACO+TS”组合算法在飞行距离和飞行时间优化上显著领先;灵敏度分析揭示e-UAV在载重为 8 kg时的系统性能最优,同时也验证了模型的鲁棒性。【结论】“l-UAV+e -UAV”两级协同模式通过全空域链路规避地面交通瓶颈、动态回收机制与组合优化算法,能显著缩短配送时间,为低空物流网络提供了高效的调度方案。

    Abstract:

    [Purposes ] To address the issues of short flight endurance,low payload,and ground traffic limitations in single unmanned aerial vehicle (UAV),a two -level collaborative logistics distribution structure using heterogeneous UAV swarms across the entire airspace was proposed.This aims to enhance delivery efficiency through hierarchical resource scheduling,thus breaking the limitation in the traditional “UAV + vehicle ” collaboration mode.[Methods] A two -level collaborative scheduling model was established with the goal of minimizing the total flight distance.Large transport unmanned aerial vehicles (l-UAVs) were responsible for long -distance transfers and the launch/retrieval of express unmanned aerial vehicles (e-UAVs),while e -UAVs handled the final delivery.A three -phase hybrid heuristic algorithm was designed:a dynamic weight constraint K-means++ clustering algorithm was employed to divide customer points into clusters and determine launch points;an improved ant colony optimization algorithm (ACO) was used to optimize the paths of l -UAVs,and a tabu search algorithm (TS) was adopted to plan the delivery paths of e -UAVs.[Findings] Solomon dataset -based experiments show that the ACO + CS combination algorithm takes the lead in flight distance and time optimization.Sensitivity analysis indicates that the system performs best when e -UAVs have a payload of 8 kg,proving the model ’s robustness.[Conclusion ] The proposed “l-UAV + e -UAV” two -level collaboration mode avoids ground traffic bottlenecks via the entire airspace link.Its dynamic recovery mechanism and combined optimization algorithms significantly shorten delivery time,offering an efficient scheduling scheme for low -altitude logistics networks.

    参考文献
    相似文献
    引证文献
引用本文

柳伍生,余玉竹.异构无人机群两级协同物流配送调度优化[J].长沙理工大学学报(自然科学版),2025,22(4):78-92.
LIU Wusheng, YU Yuzhu. Optimization of two -level collaborative logistics distribution scheduling for heterogeneous unmanned aerial vehicle swarms[J]. Journal of Changsha University of Science & Technology (Natural Science),2025,22(4):78-92.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码