长沙理工大学学报(自然科学版)
基于小波变换和Inception网络的心跳分类
CSTR:
作者:
作者单位:

(长沙理工大学 电气与信息工程学院,湖南 长沙 410114)

作者简介:

通讯作者:

席燕辉(1979—)(ORCID:0000-0001-8598-4771),女,教授,主要从事复杂系统与建模、配电网和输电线路故障检测与分类、心律失常检测和分类等方面的研究。E-mail:xiyanhui@126.com

中图分类号:

TP391

基金项目:

国家自然科学基金面上项目(52277078);湖南省教育厅重点项目(21A0210)


Heartbeat classification based on wavelet transform and Inception network
Author:
Affiliation:

(School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】针对临床专业人士对心电图进行逐拍分析诊断时存在的耗时耗力问题,本文提出了一种基于预训练的Inception网络心电图自动识别方法。【方法】首先使用墨西哥小波变换将心电图从时域转换到时频域,提取心跳信号的时域和频域信息,然后利用Inception网络对心跳时频图进行自动诊断识别。训练中采用随机梯度下降算法对模型进行优化。【结果】为验证所提方法的有效性,在公开心律失常数据集中选取5种心跳数据进行测试。结果表明,本文算法在阳性预测值、召回率和准确率等指标都取得了很好的成绩,且在相同试验条件下,收敛更快,其准确度比预训练好的残差网络和视觉几何群网络的更高。【结论】采用墨西哥小波基函数能更好地表征单个心跳形状,而采用端到端的Inception模型能将不同宽度心跳信号特征矩阵按深度进行拼接,提取更丰富的特征。

    Abstract:

    [Purposes] In clinical practice, professionals need to analyze and diagnose the electrocardiograph (ECG) beat by beat, which is time-consuming and energy-consuming. To address this issue, an automatic ECG identification method based on a pre-trained Inception network was proposed. [Methods] Firstly, the Mexican wavelet transform was used to convert the ECG from the time domain to the time-frequency domain and extract the time domain and frequency domain information of heartbeat signals. Secondly, the Inception network was utilized to automatically diagnose and identify time-frequency graphs of heartbeats, and the stochastic gradient descent momentum (SGDM) algorithm was adopted for model optimization during the training. [Findings] In order to verify the effectiveness of the proposed method, five types of heartbeat data from the public arrhythmia database were selected, and experimental results show that the proposed algorithm performs well in indicators such as positive predictive value, recall rate, and accuracy, and it has higher precision and faster convergence compared with the pre-trained residual networks and visual geometry group networks under the same experimental conditions. [Conclusions] The Mexican wavelet basis function can better characterize the shape of a single heartbeat, and the end-to-end Inception model can concatenate the heartbeat signal feature matrices with different widths according to the depth and extract richer features.

    参考文献
    相似文献
    引证文献
引用本文

林鸣放,席燕辉.基于小波变换和Inception网络的心跳分类[J].长沙理工大学学报(自然科学版),2024,21(6):142-151.
LIN Mingfang, XI Yanhui. Heartbeat classification based on wavelet transform and Inception network[J]. Journal of Changsha University of Science & Technology (Natural Science),2024,21(6):142-151.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-15
  • 出版日期:
文章二维码