长沙理工大学学报(自然科学版)
基于卷积神经网络算法的高压发电机保护研究
CSTR:
作者:
作者单位:

(长沙理工大学 电气与信息工程学院,湖南 长沙 410114)

作者简介:

通讯作者:

王媛媛(1980—)(ORCID:0000-0002-9575-3712),女,教授,主要从事电力系统保护方面的研究。 E-mail:wyy_1202@163.com

中图分类号:

TM77

基金项目:

国家自然科学基金资助项目(52177069);湖南省研究生科研创新项目(CX20240077、CX20210795)


Research on protection for Powerformers based on CNN algorithm
Author:
Affiliation:

( School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】研究一种基于卷积神经网络算法的定子单相接地故障保护方法,以提高高压发电机定子单相接地保护的可靠性。【方法】首先,采用改进变分模态分解(variational mode decomposition,VMD)方法处理故障时序数据;接着,针对分解后的多个本征模态函数(intrinsic mode function,IMF)分量提取组合峭度、综合能量熵、综合凹凸系数,并将其构成融合特征向量;然后,采用放射性填充策略将融合特征向量升维,并将其输入卷积神经网络(convolutional neural network,CNN)算法以获得高压发电机故障判别结果;最后,为了验证该保护方法在不同运行方式下的适用性,利用电力系统仿真软件PSCAD/EMTDC,搭建了由三台高压发电机构成的系统仿真模型。【结果】本文所提保护方法可以提高判别准确率,显著减少不同中性点接地方式、故障初始角、故障位置、过渡电阻的影响,且抗噪声能力更强。【结论】本文所提保护方法判别精度高,可靠性强,适用于多种运行方式下的高压发电机定子单相接地故障保护。

    Abstract:

    [Purposes]This paper aims to study a stator single-phase ground fault protection method based on a convolutional neural network (CNN) algorithm, so as to improve the reliability of stator single-phase ground fault protection for Powerformers. [Methods] First, an improved variational mode decomposition (VMD) method was used to process fault time-series data. Next, combined kurtosis, comprehensive energy entropy, and comprehensive concavity coefficients were extracted from the decomposed intrinsic mode function (IMF) components to form a fused feature vector. Then, a radiative padding strategy was applied to enhance the feature vector dimensionality, which was input into the CNN algorithm to determine the fault identification results of the Powerformer. Finally, to verify the method’s applicability under different operating conditions, a system simulation model consisting of three Powerformers was built by using the PSCAD/EMTDC power system simulation software. [Findings]The proposed protection method enhances identification accuracy, significantly reduces the impact of different neutral point grounding methods, fault initial angles, fault locations, and transition resistances, and demonstrates stronger noise resistance. [Conclusions] The proposed protection method achieves high identification accuracy and strong reliability, making it suitable for stator single-phase ground fault protection of Powerformers under various operating conditions.

    参考文献
    相似文献
    引证文献
引用本文

李毓洋,王媛媛,罗晓敏.基于卷积神经网络算法的高压发电机保护研究[J].长沙理工大学学报(自然科学版),2024,21(6):111-119.
LI Yuyang, WANG Yuanyuan, LUO Xiaoming. Research on protection for Powerformers based on CNN algorithm[J]. Journal of Changsha University of Science & Technology (Natural Science),2024,21(6):111-119.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-15
  • 出版日期:
文章二维码