长沙理工大学学报(自然科学版)
Li2O对盖板玻璃离子交换深度和力学性能影响
作者:
作者单位:

(彩虹集团(邵阳)特种玻璃有限公司,湖南 邵阳 422000)

通讯作者:

张晓辉(1977—)(ORCID:0009-0008-7546-9758),男,高级工程师,主要从事硅酸盐超薄盖板玻璃生产工艺方面的研究。E-mail:zxh6121160@126.com

中图分类号:

U465;TQ171.73


Effect of Li2O on ion exchange depth and mechanical properties of cover glass
Author:
Affiliation:

(Caihong Group (Shaoyang) Special Glass Co., Ltd., Shaoyang 422000, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    【目的】以KNO3/NaNO3混合熔盐增强盖板玻璃的离子交换深度及力学性能。【方法】采用低温离子交换法对铝硅盖板玻璃进行化学强化,并在玻璃料方中添加Li2O,对玻璃进行二次强化。【结果】在玻璃料方中添加Li2O后进行的二次强化工艺能够显著提高玻璃的离子交换深度,同时保持其优良的力学性能。相比于传统的低温离子交换法,二次强化工艺在提高玻璃性能的同时,避免了可能导致玻璃变形和表面缺陷的高温处理过程。【结论】通过在玻璃料方中添加Li2O的二次强化工艺制备的锂铝硅盖板玻璃具有较大的离子交换深度,同时该玻璃的抗冲击强度等力学性能得到了显著增强。该玻璃在航空航天领域、交通领域、电子产品及清洁能源等领域具有广泛的应用前景。

    Abstract:

    [Purposes] This paper aims to enhance the ion exchange depth and mechanical properties of the cover glass by selecting KNO3/NaNO3 as molten salt. [Methods] Aluminum-silicon cover glass was chemically strengthened by a low-temperature ion exchange method. Li2O was added to the glass formula for secondary strengthening of the glass. [Findings] The ion exchange depth of the glass can be significantly improved by adding Li2O to the glass formula while maintaining its excellent mechanical properties. Compared with the traditional low-temperature ion exchange method, secondary strengthening method not only improves glass performance but also avoids the high-temperature processes that may cause glass deformation and surface defects. [Conclusions] The lithium-aluminum-silicon cover glass prepared by adding Li2O for secondary strengthening demonstrates high impact resistance and other mechanical properties, showing a wide range of application prospects in the fields of aerospace, transportation, electronic products, and clean energy.

    参考文献
    [1] 唐昆,乐江南,胡永乐,等. 非球面磷酸盐玻璃镜片精密热压仿真与试验[J].长沙理工大学学报(自然科学版),2022,19(4):19-31.DOI:10.19951/j.cnki.1672-9331.2022.04.003.TANG Kun, YUE Jiangnan, HU Yongle, et al. Simulation and experiment of precision hot pressing of aspheric phosphate glass lenses[J]. Journal of Changsha University of Science & Technology (Natural Science), 2022, 19(4): 19-31. DOI: 10.19951/j.cnki. 1672-9331.2022.04.003.
    [2] 成钢,唐昆,刘冠中,等. 聚合物微针阵列热压印成型仿真与试验研究[J].长沙理工大学学报(自然科学版),2024,21(2):68-76.DOI:10.19951/j.cnki.1672-9331.20221209001.CHENG Gang, TANG Kun, LIU Guanzhong, et al. Simulation and experimental research on the hot embossing of polymer microneedle arrays[J]. Journal of Changsha University of Science & Technology (Natural Science), 2024, 21(2): 68-76. DOI: 10.19951/j.cnki. 1672-9331.20221209001.
    [3] 毛静怡,袁健,郭震侨.通过化学强化提高超薄柔性玻璃的弯曲性能[J].国际应用玻璃科学杂志,2024, 15(3): 267-275. DOI:10.1111/ijag.16659.MAO Jingyi, YUAN Jian, GUO Zhenqiao, et al. Enhancing bending performance of ultrathin flexible glass through chemical strengthening[J]. International Journal of Applied Glass Science, 2024, 15(3): 267-275. DOI:10.1111/ijag.16659.
    [4] LI X C, LI D, ZHANG S F, et al. Effect of Li+/Na+ exchange on mechanical behavior and biological activity of lithium disilicate glass-ceramic[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126: 105036. DOI: 10.1016/j.jmbbm.2021. 105036.
    [5] 陈福.玻璃表面化学增强技术[J].玻璃,2019,46(6):10-14.DOI:10.3969/j.issn.1003-1987.2019.06.002.CHEN Fu. The chemical strengthening technology of glass surface[J]. Glass, 2019, 46(6): 10-14. DOI:10. 3969/j.issn.1003-1987.2019.06.002.
    [6] LI X C, MENG M, LI D, et al. Strengthening and toughening of a multi-component lithium disilicate glass-ceramic by ion-exchange[J]. Journal of the European Ceramic Society, 2020, 40(13): 4635-4646. DOI: 10.1016/j.jeurceramsoc.2020.05.075.
    [7] MUHAMMAD Z S, WANG Z, SUO T, et al. Dynamic failure of un-strengthened aluminosilicate glass.Theoretical and Applied Fracture Mechanics, 2019, 104: 102325. DOI:10.1016/j.tafmec.2019.102325.
    [8] 李超. 玻璃强化及热加工技术[M].北京:化学工业出版社,2013,87:115-135.LI Chao. Glass strengthening and hot working technology[M]. Beijing: Chemical Industry Press, 2013, 87: 115-135.
    [9] JIANG L B, WANG Y, MOHAGHEGHIAN I, et al. Subcritical crack growth and lifetime prediction of chemically strengthened aluminosilicate glass. Materials & Design, 2017, 122: 128-135. DOI:10. 1016/j. matdes.2017.03.020.
    [10] RAGOEN C, MARPLE M A T, SEN S, et al. Na+/K+ ion exchange in silicate glasses: results from 17O 3QMAS NMR[J]. Journal of Non-Crystalline Solids, 2017, 475: 190-194. DOI: 10.1016/j.jnoncrysol.2017. 09.003.
    [11] 和阿雷. 高铝硅酸盐玻璃化学强化研究[D].杭州: 浙江大学,2016.HE Alei. Study on chemical strengthening of high aluminosilicate glass[D].Hangzhou: Zhejiang University, 2016.
    [12] 田英良,李俊杰,宫汝华,等. 碱铝硅酸盐玻璃化学强化关键影响因素概述[J].玻璃搪瓷与眼镜,2020,48(2):26-28,32.DOI:10.13588/j.cnki.g.e.2096-7608. 2020.02.007.TIAN Yingliang, LI Junjie, GONG Ruhua, et al. Overview of principal factors influencing chemical strengthening for alkali aluminosilicate glass[J]. Glass Enamel & Ophthalmic Optics, 2020, 48(2): 26-28,32. DOI:10.13588/j.cnki.g.e.2096-7608.2020. 02.007.
    [13] GUO Y L, LIU C, WANG J, et al. Effects of alkali oxides and ion-exchange on the structure of zinc-alumino-silicate glasses and glass-ceramics[J]. Journal of the European Ceramic Society, 2022, 42(2): 576-588. DOI: 10.1016/j.jeurceramsoc.2021.10.016.
    [14] ZHANG L Y, GUO X J. Thermal history and its implications: a case study for ion exchange[J]. Journal of the American Ceramic Society, 2020, 103(7): 3971-3977. DOI: 10.1111/jace.17027.
    [15] 闫建华,段正康,章泽成,等. 玻璃化学强化用硝酸钾盐浴失活原因分析[J].硅酸盐通报,2015,34(2): 438-443.DOI:10.16552/j.cnki.issn1001-1625.2015. 02.022.YAN Jianhua, DUAN Zhengkang, ZHANG Zecheng, et al. Analysis on the causes of the deactivation of KNO3 molten salt baths used for chemical strengthening glass[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 438-443. DOI:10.16552/j.cnki.issn1001-1625. 2015.02.022.
    [16] 姜良宝,厉蕾,张官理,等. 化学强化铝硅酸盐玻璃研究进展[J].材料工程,2014,42(10):106-112.DOI: 10.11868/j.issn.1001-4381.2014.10.019.JIANG Liangbao, LI Lei, ZHANG Guanli, et al. Progress in research on chemical strengthened aluminosilicate glass[J]. Journal of Materials Engineering, 2014, 42(10): 106-112. DOI: 10. 11868/j.issn.1001-4381.2014.10.019.
    [17] MEN T J, CHAI Z G, LI X C, et al. Improving early running-in wear characteristics for dental lithium disilicate glass-ceramics by ion-exchange[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126: 105037. DOI: 10.1016/j.jmbbm.2021. 105037.
    [18] LI X C, MENG M, LI D, et al. Strong time-dependence for strengthening a lithium disilicate parent glass and the corresponding glass-ceramic by Li+/Na+ exchange[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100: 103394. DOI: 10. 1016/j.jmbbm.2019.103394.
    [19] ATILGAN S, ?ZBEN N, S?KMEN ?, et al. Effect of surface cleaning prior to chemical strengthening process of glass[J]. International Journal of Applied Glass Science, 2020, 11(4): 720-729. DOI: 10.1111/ijag.15479.
    [20] 王明忠,梁新辉,宋占财,等. 熔盐配比对锂铝硅玻璃化学强化性能的影响[J].玻璃搪瓷与眼镜,2020,48(6):8-12.DOI:10.13588/j.cnki.g.e.2096-7608. 2020.06.002.WANG Mingzhong, LIANG Xinhui, SONG Zhancai, et al. Effect of the ratio of molten salts on the chemically tempered performance of lithium aluminosilicate glasses[J]. Glass Enamel & Ophthalmic Optics, 2020, 48(6): 8-12. DOI: 10. 13588/j.cnki.g.e.2096-7608. 2020.06.002.
    [21] 张燕红,徐龙,方俊杰. 粗集料棱角性对水泥稳定碎石强度的影响[J].交通科学与工程,2022,38(1):15-20,54.DOI:10.16544/j.cnki.cn43-1494/u. 2022.01.005.ZHANG Yanhong, XU Long, FANG Junjie. Influence of coarse aggregate angularity on strength characteristics of cement stabilized macadam[J]. Journal of Transport Science and Engineering, 2022, 38(1): 15-20, 54. DOI: 10.16544/j.cnki.cn43-1494/u. 2022.01.005.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张晓辉. Li2O对盖板玻璃离子交换深度和力学性能影响[J].长沙理工大学学报(自然科学版),2024,21(6):104-110.
ZHANG Xiaohui. Effect of Li2O on ion exchange depth and mechanical properties of cover glass[J]. Journal of Changsha University of Science & Technology (Natural Science),2024,21(6):104-110.

复制
分享
文章指标
  • 点击次数:24
  • 下载次数: 22
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-05
  • 在线发布日期: 2025-01-15
文章二维码