长沙理工大学学报(自然科学版)
基于代理模型更新管理策略的汽车乘员约束系统优化设计
CSTR:
作者:
作者单位:

(1.长沙理工大学 道路灾变防治及交通安全教育部工程研究中心,湖南 长沙 410114;2.长沙理工大学 工程车辆安全性设计与可靠性技术湖南省重点实验室,湖南 长沙 410114)

作者简介:

通讯作者:

刘鑫(1981—)(OCRID:0000-0003-4766-3517),男,教授,主要从事汽车结构可靠性优化技术方面的研究。 E-mail:lxym810205@163.com

中图分类号:

U461.91

基金项目:

湖南省杰出青年科学基金资助项目(2021JJ10040);湖南省教育厅科学研究资助项目(20K008);长沙理工大学道路灾变防治及交通安全教育部工程研究中心开放基金资助项目(kfj170401)


Optimization design of vehicle occupant restraint system based on surrogate model update management strategy
Author:
Affiliation:

(1. Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road & Traffic Safety of Ministry of Education, Changsha University of Science & Technology, Changsha 410114, China; 2. Hunan Province Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Changsha University of Science & Technology, Changsha 410114, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】探讨汽车乘员约束系统的安全性能。【方法】提出了一种基于代理模型更新管理策略的汽车乘员约束系统优化设计方法。建立乘员约束系统仿真模型,并检验该仿真模型是否准确可靠;对乘员损伤响应进行灵敏度分析,筛选出对损伤响应影响较大的模型参数;利用局部评估指数判断是否对代理模型的局部区域进行重采样,确定重采样区间,并采用最优拉丁超立方设计获得局部样本点;应用遗传拉丁超立方进行采样,获取全局样本点,通过加权欧式距离准则对局部和全局样本点进行筛选,并将筛选后合格的样本点添加到初始样本空间中以更新代理模型;通过隔代映射遗传算法搜寻潜在的最优解。【结果】该方法在保证代理模型精度下,减轻了乘员的损伤,保证了乘员的安全。【结论】该方法能较高效地确定乘员约束系统的最优解。

    Abstract:

    [Purposes] This paper aims to explore the safety performance of a vehicle occupant restraint system. [Methods] An optimization design method of the vehicle occupant restraint system based on the surrogate model update management strategy was proposed. A simulation model of the occupant restraint system was established, and the accuracy and reliability of the simulation model were verified. The sensitivity analysis was performed on the occupant injury response, and the model parameters that had a greater impact on the injury response were screened out. The local evaluation index was used to judge whether to resample the local region of the surrogate model, and the resampling interval was determined. The local sample points were obtained by the optimal Latin hypercube design. Inherited Latin hypercube was employed in sampling, so as to obtain global sample points. The local and global sample points were filtered by the weighted Euclidean distance criterion, and the qualified sample points were added to the initial sample space to update the surrogate model. Finally, the potential optimal solution was searched by the intergeneration projection genetic algorithm. [Findings] The method can reduce the injury of the occupant and ensure the safety of the occupant while ensuring the accuracy of the surrogate model. [Conclusions] The proposed method can efficiently solve the optimal solution of the occupant restraint system.

    参考文献
    相似文献
    引证文献
引用本文

刘鑫,毛勇勇.基于代理模型更新管理策略的汽车乘员约束系统优化设计[J].长沙理工大学学报(自然科学版),2024,21(6):87-95.
LIU Xin. Optimization design of vehicle occupant restraint system based on surrogate model update management strategy[J]. Journal of Changsha University of Science & Technology (Natural Science),2024,21(6):87-95.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-15
  • 出版日期:
文章二维码