长沙理工大学学报(自然科学版)
冻融循环下砂-黏土混合物的体变和强度特性
CSTR:
作者:
作者单位:

(1.北京建筑大学 土木与交通工程学院,北京 100044;2. 北京城市交通基础设施建设工程技术研究中心,北京 102616)

作者简介:

通讯作者:

索智(1978—)(ORCID:0000-0002-7136-2776),男,教授,主要从事道路工程方面的研究。 E-mail:suozhi@bucea.edu.cn

中图分类号:

TV223

基金项目:

国家重点研发计划专项(2021YFB2601200);国家自然科学基金青年项目(52108295);北京建筑大学“建大英才项目”(JDYC20220811);北京建筑大学培育项目-青椒计划(X24023)


Volumetric strain and strength properties of sand-clay mixture under freeze-thaw cycles
Author:
Affiliation:

(1.School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044,China; 2.Beijing Urban Transportation Infrastructure Construction Technology Research Center, Beijing 102616, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】获得压实砂-黏土混合物在不同重塑含水率和压实度下的冻融体变和强度劣化规律,揭示规律变化的微观机理。【方法】对三类重塑含水率(最优含水率wopt、干侧含水率wd、湿侧含水率ww)和两种压实度(Dc=0.80和0.85)的砂-黏土混合物(砂体积分数S=20%)开展了冻融循环下的体变和无侧限抗压强度(unconfined compression strength,UCS)研究,并基于X射线成像和电镜扫描技术的微观观测结果揭示了相关机理。【结果】S=20%的砂-黏土混合物呈黏土控制型土骨架结构,在wopt和wd下黏土颗粒聚集成团形成团粒-团粒结构,随Dc增大团粒间大孔隙群被压缩;在ww下黏土颗粒分散形成颗粒-颗粒结构,随Dc增大整体孔隙群被压缩。当Dc=0.80时,wopt和wd对应的试样呈现“冻缩融胀”规律,ww对应的试样呈现“冻胀融缩”规律;当Dc增大至0.85时,wopt对应试样的体变规律转为“冻胀融缩”。此外,各类试样的体变在冻融结束后均呈现增大趋势。随冻融循环次数增多,UCS呈现衰减趋势,最大衰减速率出现在第1个循环。当Dc=0.80时,不同含水率下的UCS最大衰减速率由大到小依次为ww下的UCS最大衰减速率(42 kPa/次)、wd 下的UCS最大衰减速率(29 kPa/次)、wopt下的UCS最大衰减速率(15.5 kPa/次);当Dc增大至0.85时,三个含水率下的UCS最大衰减速率均得到提高且数值转为相近(均在48~50 kPa/次)。【结论】压实砂-黏土混合物土骨架结构随重塑含水率和压实度变化呈现不同的形态,影响了冻融循环下的体变和强度衰减规律。研究成果可为季冻区路基的建设和运营维护提供技术支撑。

    Abstract:

    [Purposes] This study aims to obtain the volumetric strain and strength deterioration pattern of a compacted sand-clay mixture under freeze-thaw cycles at various remolding water contents and compaction degrees and reveal the microscopic mechanism of the change and pattern. [Methods] Studies concerning volumetric strain and unconfined compression strength (UCS) under freeze-thaw cycles were carried out on the sand-clay mixture (sand volume fraction S is 20%) at three remolding water contents (optimum water content wopt, as well as water content at dry side wd and wet side ww) and two compaction degrees (Dc is 0.80 and 0.85). Based on the microscopic observation results obtained through X-ray microscopy and scanning electron microscope techniques, the relevant mechanism was revealed. [Findings] The soil skeleton of sand-clay mixture with S being 20% is a clay-controlled type. At wopt and wd, clay aggregate takes shape with clay particles gathering together, and an aggregate-aggregate structure is formed. As Dc increases, the large pores between aggregates are compressed. At ww, the clay particles are dispersed to form a particle-particle structure. As Dc increases, the whole pores are compressed. When Dc is 0.80, samples corresponding to wopt and wd exhibit a pattern of “contraction upon freezing and expansion upon thawing”, while samples corresponding to ww exhibit a pattern of “expansion upon freezing and contraction upon thawing”. When Dc increases to 0.85, the volumetric strain pattern of samples corresponding to wopt turns to be “expansion upon freezing and contraction upon thawing”. In addition, the volumetric strain after freeze-thaw cycles of all samples is more obvious. With the increase in freeze-thaw cycles, UCS deteriorates, and the maximum deterioration rate occurs at the first freeze-thaw cycle. When Dc is 0.80, the maximum deterioration rate of UCS of the samples at different water contents in descending order is as follows: 42 kPa/cycle under ww, 29 kPa/cycle under wd, and 15.5 kPa/cycle under wopt. When Dc increases to 0.85, all the maximum deterioration rates under the three water contents are enhanced and tend to be the same value (all between 48 and 50 kPa/cycle). [Conclusions] The soil skeleton of compacted sand-clay mixture exhibits different patterns as remolding water content and compaction degree vary, influencing volumetric strain and strength deterioration patterns under freeze-thaw cycles. The findings can provide technical support for the construction, operation, and maintenance of subgrades in seasonal frozen regions.

    参考文献
    相似文献
    引证文献
引用本文

亓 帅,汪 晶,索 智,等.冻融循环下砂-黏土混合物的体变和强度特性[J].长沙理工大学学报(自然科学版),2024,21(6):40-52.
QI Shuai, WANG Jing, SUO Zhi, et al. Volumetric strain and strength properties of sand-clay mixture under freeze-thaw cycles[J]. Journal of Changsha University of Science & Technology (Natural Science),2024,21(6):40-52.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-15
  • 出版日期:
文章二维码