长沙理工大学学报(自然科学版)
基于双重注意力U-Net的砌体结构震害裂缝检测
CSTR:
作者:
作者单位:

(1.西安建筑科技大学 土木工程学院,陕西 西安 710055;2.西安建筑科技大学 资源工程学院,陕西 西安 710055)

作者简介:

通讯作者:

赵平(1967—)(ORCID:0009-0009-5568-7894),女,教授,主要从事土木工程建造与管理方面的研究。 E-mail:13909208708@163.com

中图分类号:

基金项目:

国家自然科学基金项目(52208204)


Detection of earthquake-induced cracks in masonry structures based ondual attention U-Net
Author:
Affiliation:

(1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;2. School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】砌体结构震害裂缝严重影响结构安全。在震后应急响应阶段,对结构各部位进行裂缝检测是结构安全鉴定的重要依据。为提高检测效率,提出一种改进的多目标语义分割算法,即双重注意力U-Net(dual attention U-Net,DA U-Net)。【方法】首先,为支持模型的训练,创建一个手工标记的数据集,并采用数据增强策略保证网络学习到更多的裂缝细节特征;其次,使用VGG16 (visual geometry group 16-layer)网络替换U-Net主干特征提取网络,并且在跳层连接处嵌入卷积块状注意力模块和非局部注意力机制,有利于改善裂缝边缘分割不完整和全局特征信息利用不充分的问题,以及有效利用浅层特征信息来加强特征表示;最后,用亚像素卷积取代原上采样操作,补充低分辨率像素缺失的语义信息。【结果】改进DA U-Net网络在分类准确率和分割精度上均达到最佳表现。精度评价指标F1分数(F1 score)指标[EF1]、平均像素精度(mean pixel accuracy,MPA)指标[EMPA]和平均交并比(mean intersection over union,MIOU)指标[EMIOU]达到84.66%、91.57%和81.50%,相比U-Net网络的分割精度均提高5.00%以上。选择合适的主干网络能更好地捕捉和表征数据的复杂特征,同时对全局空间位置信息关注度也更高。【结论】改进算法可显著提升对裂缝识别和定位的准确性,以及对裂缝的整体形态、走向和交融情况的分割完整性,增强多组合裂缝分割精度,为震后砌体结构房屋安全鉴定提供一种有效的检测方法。

    Abstract:

    [Purposes] Earthquake-induced cracks seriously affect the safety of masonry structures. During the post-earthquake emergency response, crack detection in various components is crucial for the safety assessment of the structures. To enhance detection efficiency, an improved dual attention U-Net (DA U-Net) based on a multi-target semantic segmentation algorithm was proposed. [Methods] For effective model training, a manually labeled dataset was created, and data augmentation strategies were utilized to make the network learn about more crack details. Furthermore, VGG16 was employed to replace the backbone feature extraction network of U-Net. Additionally, convolutional block attention modules and non-local attention (NA) mechanisms were embedded into the skip connections. As a result, the problems of incomplete crack edge segmentation and inadequate utilization of global feature information were ameliorated. Shallow feature information was effectively utilized, and feature representation was strengthened. Finally, sub-pixel convolution replaced the original up-sampling operation, supplementing semantic information loss in low-resolution pixels. [Findings] The improved DA U-Net achieves optimal performance in both classification accuracy and segmentation precision, with the precision evaluation metrics of F1 score([EF1]), mean pixel accuracy ([EMPA]), and mean intersection over union ([EMIOU]) reaching 84.66%, 91.57%, and 81.50%, respectively. This represents an improvement of over 5.00% in segmentation accuracy compared to the original U-Net. Selecting an appropriate backbone network enables better capture and representation of complex features in the data, with a heightened focus on global spatial location information. [Conclusions] The improved algorithm significantly enhances the accuracy of crack recognition and localization, as well as the completeness of segmentation for the overall morphology, direction, and intersection of cracks. It strengthens the precision of segmenting multi-combined cracks, providing an effective detection method for post-earthquake safety assessment of masonry structures.

    参考文献
    相似文献
    引证文献
引用本文

赵平,靳丽艳,刘钰.基于双重注意力U-Net的砌体结构震害裂缝检测[J].长沙理工大学学报(自然科学版),2024,21(5):136-145,155.
ZHAO Ping, JIN Liyan, LIU Yu. Detection of earthquake-induced cracks in masonry structures based ondual attention U-Net[J]. Journal of Changsha University of Science & Technology (Natural Science),2024,21(5):136-145,155.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-23
  • 出版日期:
文章二维码