长沙理工大学学报(自然科学版)
黏土路基回弹模量预测及贝叶斯模型选择研究
CSTR:
作者:
作者单位:

(西安交通大学 人居环境与建筑工程学院,陕西 西安 710049)

作者简介:

通讯作者:

赵腾远(1988—)(ORCID:0000-0002-7007-094X),男,教授,主要从事岩土工程贝叶斯模型选择、可靠度设计与分析、数字岩土工程与机器学习交叉等方面的研究。E-mail:tyzhao@xjtu.edu.cn

中图分类号:

U416.1、U412.6

基金项目:

国家自然科学基金资助项目(42107204)


Prediction of the resilient modulus of subgrade clay and Bayesian model class selection
Author:
Affiliation:

(School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】确定黏土路基回弹模量的最优估计模型,实现黏土路基回弹模量的准确预测。【方法】采用贝叶斯高斯过程回归方法,建立了路基土的围压、偏应力、含水率以及干重度与路基回弹模量之间的定量关系,实现了高斯过程回归参数的准确估计与最优影响因子组合的客观选择,在模型的复杂度与拟合程度之间达到了自动平衡。【结果】基于所提出的贝叶斯高斯过程回归方法可准确预测路基的回弹模量,所选最优模型的决定系数(R2)和平均绝对百分误差(RMAPE)分别达到了0.99和1.51%,与全变量模型的预测性能几乎相同。在100次随机试验中,最优模型被选择的比率达到了88%。【结论】所提出的贝叶斯高斯过程回归方法不仅可以通过路基土相关物理力学参数准确预测路基的回弹模量,还可以有效剔除冗余输入变量,在保证模型拟合程度的情况下,降低了模型的复杂度,这对模型的应用与推广具有重要意义。

    Abstract:

    [Purposes] The paper aims to determine the optimal model for predicting the resilient modulus of subgrade soil and predict the resilient modulus of subgrade soil accurately. [Methods] The fully Bayesian Gaussian process regression (fB-GPR) approach is proposed in this study to establish the relationship between the resilient modulus of subgrade soil (MR) and the confining pressure (σ3), deviator pressure (σd), moisture content (w), dry density (ρd). The parameters of the GPR model are estimated accurately and the optimal model for the prediction of the resilient modulus of subgrade soil is determined objectively using the proposed approach in this study. The optimal model reaches a balance between the complexity and fitting degree. [Findings] The findings show that the resilient modulus of subgrade soil can be predicted accurately using the proposed approach in this study. The coefficient of determination (R2) and the mean absolute percentage error (RMAPE) of the optimal GPR model reach 0.99 and 1.51%, respectively, which is similar to the full model. In 100 experiments, the percentage of the optimal model being selected reaches 88%. [Conclusions] The proposed fB-GPR approach not only accurately predict the resilient modulus using the easily available indices of subgrade soil but also effectively eliminate the redundant input variables. The proposed approach reduces complexity without compromising the fitting degree of the GPR model, holding significance for its application and promotion in the future.

    参考文献
    相似文献
    引证文献
引用本文

宋超,赵腾远.黏土路基回弹模量预测及贝叶斯模型选择研究[J].长沙理工大学学报(自然科学版),2024,21(1):88-99.
SONG Chao, ZHAO Tengyuan. Prediction of the resilient modulus of subgrade clay and Bayesian model class selection[J]. Journal of Changsha University of Science & Technology (Natural Science),2024,21(1):88-99.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-18
  • 出版日期:
文章二维码