长沙理工大学学报(自然科学版)
基于曲线特征聚类与信息聚合的电力负荷预测
CSTR:
作者:
作者单位:

(1.长沙理工大学 电气与信息工程学院,湖南 长沙 410114;2.广东电网有限责任公司 广州供电局,广东 广州 510620)

作者简介:

通讯作者:

岳首志(1993—)(ORCID:0009-0006-1477-7832),男,助理工程师,主要从事电力系统大数据分析方面的研究。E-mail:1411342870@qq.com

中图分类号:

TM73

基金项目:

中国南方电网资助项目(GZHKJXM20200037)


Power load forecasting based on curve feature clustering and information aggregation
Author:
Affiliation:

(1. School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2. Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510620, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】为获得准确可靠的超短期电力负荷预测结果以满足电力系统快速响应和实时调度的需要,考虑到电网负荷数据非线性、时序性等特征,提出一种基于曲线特征聚类与信息聚合的电力负荷超短期区间预测方法。【方法】首先,考虑负荷曲线的局部波动特征和整体趋势特征,将电力负荷曲线分为不同类别;然后,将高斯过程回归模型作为表征负荷整体趋势的预测模型,并将基于分位数的双向长短期记忆神经网络作为表征负荷局部波动的预测模型;最后,引入聚合思想,将Choquet积分算法作为聚合函数,对上述两种预测模型的结果进行聚合。【结果】所提预测方法有效实现了考虑多种特征的日负荷曲线的聚类;对单一模型的预测结果进行聚合,得到了不同场景下各置信度的区间预测结果。通过算例分析,所提预测方法的可靠性指标比上述两个单一预测模型的分别平均提高了14.70%、10.81%,综合性能分别平均提高了3.14%、15.55%。【结论】算例结果表明,与常见负荷概率预测方法和单一预测模型相比,所提方法在预测精度和可靠性上均有显著提高。此外,聚类方法和信息聚合思想的引入有助于预测模型精度的提升。

    Abstract:

    [Purposes] In order to obtain accurate and reliable ultra-short term power load forecasting results to meet the needs of rapid response and real-time dispatching of power system, considering the characteristics of non-linear and timely ordering of power grid load data, this paper proposeed a method of ultra-short term interval forecasting of power load based on curve feature clustering and information aggregation. [Methods] Firstly, considering the local fluctuation characteristics and overall trend characteristics of the load curve, the power load curvewas divided into different categories. Then, the Gaussian process regression model was used as the prediction model to characterize the overall trend of load, and the quantile based bidirectional long-term and short-term memory neural network was used as the prediction model to characterize the local fluctuation of load. Finally, the aggregation idea was introduced, and the Choquet integral algorithm was used as the aggregation function to aggregate the results of the two prediction models. [Findings] This method effectively realized the clustering of daily load curves considering multiple characteristics. Meanwhile, the prediction results of a single model were aggregated, which obtained the interval prediction results of each confidence level under different scenarios. Under example analysis, the reliability index of the prediction method in this paper was 14.70% and 10.81% higher than that of the two single models, and the comprehensive performance was 3.14% and 15.55% higher than that of the two single models. [Conclusions] The results of the example showed that the forecasting accuracy and reliability of the model proposed in this paper are significantly improved comparing with the common load probability forecasting methods and the single forecasting model. In addition, the introduction of clustering method and information aggregation idea is useful to improve the accuracy of the forecasting model.

    参考文献
    相似文献
    引证文献
引用本文

岳首志,洪海生,邓祺,等.基于曲线特征聚类与信息聚合的电力负荷预测[J].长沙理工大学学报(自然科学版),2023,20(6):128-139.
YUE Shouzhi, HONG Haisheng, DENG Qi, et al. Power load forecasting based on curve feature clustering and information aggregation[J]. Journal of Changsha University of Science & Technology (Natural Science),2023,20(6):128-139.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-17
  • 出版日期:
文章二维码