长沙理工大学学报(自然科学版)
基于SSA-LSSVM的住宅工程造价预测研究
作者:
作者单位:

(长沙理工大学 交通运输工程学院,湖南 长沙 410114)

作者简介:

通讯作者:

彭军龙(1976—)(ORCID:0000-0002-5585-0569),男,副教授,主要从事工程项目管理方面的研究。 E-mail:375135287@qq.com

中图分类号:

TU723.3

基金项目:

国家自然科学基金资助项目(51578080);湖南省自然科学基金资助项目(2021JJ30746)


Research on residential project cost prediction based on SSA-LSSVM
Author:
Affiliation:

(School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】提高建筑工程造价预测的准确性,进而为项目前期投资决策提供重要依据。【方法】针对工程实践中小样本数据和工程造价特征指标之间高维、非线性关系的特点,构建基于麻雀搜索算法(sparrow search algorithm, SSA)的优化最小二乘支持向量机(least squares support vector machine, LSSVM)造价预测模型SSA-LSSVM。首先,通过主成分分析法对住宅工程造价样本的输入指标数据进行处理,减少数据冗余;其次,采用SSA算法对LSSVM模型中的正则化参数c和核函数参数σ进行优化,以弥补LSSVM模型参数确定困难的缺陷;最后,将处理后的数据导入所构建的模型进行训练和预测,并通过相关系数、平均绝对百分比误差和均方根误差对模型的预测性能进行评价。【结果】与LSSVM模型、用灰狼优化算法优化的LSSVM模型和反向传播神经网络模型相比,SSA-LSSVM模型具有更好的泛化能力和更高的预测精度。【结论】本研究所构建的模型可以比较精准、高效地对实际住宅工程造价进行预测,同时可为工程前期投资决策提供一定参考。

    Abstract:

    [Purposes] This paper aims to improve the accuracy of construction cost prediction, and provide an important basis for the early investment decision of the project. [Methods] For the characteristics of high-dimensional nonlinear relationships between small sample data and the characteristic indexes of project cost in engineering practice, a cost prediction model (SSA-LSSVM) based on the sparrow search algorithm (SSA) optimized least squares support vector machine (LSSVM) is constructed. Firstly, the input index data of residential project cost is processed by principal component analysis to reduce data redundancy. Secondly, the SSA is used to optimize the regularization parameter c and the kernel function parameter σ in the LSSVM model to help determine the parameters of the LSSVM model. Finally, the processed data is imported into the constructed model for training and prediction, and the model prediction performance is evaluated by three metrics, that is correlation coefficient, mean absolute percentage error and root-mean-square error. [Findings] SSA-LSSVM model has better generalization ability and prediction accuracy compared with LSSVM model, LSSVM model optimized by grey wolf algorithm and back propagation neural network. [Conclusions] The model built in this study can accurately and efficiently predict the actual residential project cost, which can provide some reference for the pre-project investment decision.

    参考文献
    相似文献
    引证文献
引用本文

彭军龙,胡珂,王梦瑶,等.基于SSA-LSSVM的住宅工程造价预测研究[J].长沙理工大学学报(自然科学版),2023,20(3):137-145.
PENG Junlong, HU Ke, WANG Mengyao, et al. Research on residential project cost prediction based on SSA-LSSVM[J]. Journal of Changsha University of Science & Technology (Natural Science),2023,20(3):137-145.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码