长沙理工大学学报(自然科学版)
基于时间序列聚类的交通事故黑点识别与分析
CSTR:
作者:
作者单位:

(1.长沙理工大学 汽车与机械工程学院,湖南 长沙 410114;2.长沙理工大学 工程车辆安全性设计与可靠性技术湖南省重点实验室,湖南 长沙 410114;3.中国汽车技术研究中心有限公司,天津 300300;4.长沙市公安局交通警察支队,湖南 长沙 410006)

作者简介:

通讯作者:

林淼(1986—)(ORCID:0009-0004-3904-2360),男,高级工程师,主要从事交通事故分析与交通安全评价的研究。E-mail:linmiao@catarc.ac.cn

中图分类号:

U491

基金项目:

国家自然科学基金资助项目(52172399、52175088、52211530054);湖南省教育厅科研重点项目(21A0193);长沙市自然科学基金项目(KQ2208235);国家重点研发计划项目(2019YFE0108000);中汽中心指南类项目(21243421)


Black spot identification and analysis of traffic accidents based on time series clustering
Author:
Affiliation:

(1. School of Automotive and Mechanical Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2. Hunan Province Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle,Changsha University of Science & Technology, Changsha 410114, China;3. China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China;4. Traffic Police Detachment of Changsha Public Security Bureau, Changsha 410006, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】鉴别道路交通事故黑点以及探究事故高发区域的致因。【方法】结合地理信息软件与可解释性机器学习算法,提出一种考虑交通事故时空属性的事故黑点识别及致因分析的方法。【结果】事故高发区域主要聚集在大型商业圈、客运车站与工业区附近,其事故密度为事故低发区域的6.61倍。在事故高发区域,起决定性影响的因素是碰撞形态、天气、能见度、车道类型及两轮车类型。而在事故低发区域,碰撞形态、道路等级、能见度、路面材料以及两轮车类型为主要影响因素。此外,路口路段类型、车道类型、两轮车类型以及肇事逃逸等因素在不同事故区域的影响不同。【结论】交通事故在城市内存在事故黑点,且部分道路环境因素在不同事故区域的影响不一致。研究成果可为交管部门针对事故黑点区域制定防范措施提供指导。

    Abstract:

    [Purposes] Identify the black spots of road traffic accidents and explore the causes of the accidents in black spots area. [Methods] Combining geographic information software and interpretable machine learning algorithm, this paper proposes a method of black spot identification and analysis considering temporal and spatial attributes of traffic accidents. [Findings] The accident density in the area with high accident incidence was mainly concentrated in the vicinity of large commercial area, passenger station and industrial area. The accident density in the area with high accident incidence was 6.61 times that in the area with low accident incidence. In areas with high accident rates, collision patterns, weather, visibility, lane type and two-wheeler type play a decisive role. In the low accident area, collision form, road class, visibility, road material and two-wheel vehicle type are the main influencing factors. In addition, factors such as intersection section type, lane type, two-wheeled vehicle type and hit-and-run have different impacts in different accident areas. [Conclusions] There are black spots in urban traffic accidents, and the influence of some road environmental factors is inconsistent in different accident areas. The results can provide guidance for the traffic management department to formulate preventive measures for the black spot area.

    参考文献
    相似文献
    引证文献
引用本文

林南亭,胡林,林淼,等.基于时间序列聚类的交通事故黑点识别与分析[J].长沙理工大学学报(自然科学版),2023,20(2):45-54.
LIN Nanting, HU Lin, LIN Miao, et al. Black spot identification and analysis of traffic accidents based on time series clustering[J]. Journal of Changsha University of Science & Technology (Natural Science),2023,20(2):45-54.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-16
  • 出版日期:
文章二维码