长沙理工大学学报(自然科学版)
复杂装备故障预测方法研究综述
CSTR:
作者:
作者单位:

(国防科技大学 系统工程学院,湖南 长沙 410073)

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(72071208)


A research review on fault prognostic techniques for complex equipments
Author:
Affiliation:

(College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】阐明复杂装备故障预测内涵,指导装备主动性维修。【方法】对复杂装备故障预测研究内容、国内外研究现状以及方法体系进行调研、归纳和分析,划分并评述现有方法的适用条件和优缺点。【结果】基于知识的故障预测方法可充分利用来自相关领域专家的经验知识,但知识的获取是瓶颈问题;基于模型的故障预测方法可深入理解对象系统本质,但实际复杂装备的精确模型很难构建;数据驱动的故障预测方法依赖于大量数据,而实际应用中一些复杂装备的典型数据的获取代价很大;混合方法能克服单个预测方法的局限性,但有效的模型设计是一个难点。【结论】混合方法能更好地提高预测系统的智能性和预测性能,是复杂装备故障预测的重要发展趋势。

    Abstract:

    [Purposes] This study aims at directing the condition-based maintenance of equipment by expounding the connotation of complex equipment fault prognostic. [Methods] In this study, the relevant research contents, status, and methods were investigated, summarized, and analyzed. The existing fault prognostic methods were divided into different categories and the corresponding application conditions, advantages, and drawbacks were discussed. [Findings] The knowledge-based methods can take full advantage of the experiential knowledge from experts, but the knowledge acquisition was a bottleneck problem. The model-based methods had the advantages of in-depth understanding of the nature of the target systems, but it was difficult to establish accurate models for complex equipments. The data-driven methods relied on a large amount of data. However, the cost of acquiring typical data of some complex equipments was very high. The hybrid methods can overcome the limitation of a single method, but designing an effective hybrid model was challenging. [Conclusions] The hybrid methods can improve the intelligence and performance of the fault prognostic system, which is an important development trend of complex equipment falt prognostic.

    参考文献
    相似文献
    引证文献
引用本文

徐兆平,郭波.复杂装备故障预测方法研究综述[J].长沙理工大学学报(自然科学版),2023,20(2):10-26.
XU Zhaoping, GUO Bo. A research review on fault prognostic techniques for complex equipments[J]. Journal of Changsha University of Science & Technology (Natural Science),2023,20(2):10-26.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-16
  • 出版日期:
文章二维码