长沙理工大学学报(自然科学版)
住宅工程造价指数预测研究
作者:
作者单位:

(长沙理工大学交通运输工程学院,湖南长沙 410114)

作者简介:

刘伟军(1975-),男,副教授,主要从事公路工程造价管理与项目管理方面的研究。

通讯作者:

刘伟军(1975-),男,副教授,主要从事公路工程造价管理与项目管理方面的研究。

中图分类号:

TU-9

基金项目:

河南省交通运输厅科技项目(2014G25)


Research on predictiono fresidential construction cost index
Author:
Affiliation:

(School of Traffic and Transportation Engineering,Changsha University of Science & Technology,Changsha 410114,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    定额计价和清单计价无法准确有效地确定工程造价,而工程造价指数能够直观反映市场价格变动对工程造价的影响。准确高效地预测工程造价指数可为工程建设的各方提供决策支持,为政府部门制定有关政策提供依据。为准确高效地预测住宅工程造价指数,结合中心逼近式GM(1,1)模型、思维进化算法(mind evolutionary algorithm,MEA)和BP神经网络的功能与优点,构建基于中心逼近式GM(1,1)的MEA-BP神经网络预测模型。首先,通过训练样本确定人工、材料、机械费用等单一造价指数与住宅工程综合造价 指数的关系,然后将由中心逼近式 GM(1,1)模型计算所得的未来时期工料机单一造价指数作为 MEA-BP 神经网络预测模型的输入变量,得到未来时期的住宅工程综合造价指数。运用 MATLAB2018a软件进行仿真试验,对住宅工程造价指数进行预测,并与 BP神经网络的预测结果进行对比。通过 MEA-BP与BP神经网络预测模型的对比研究发现,MEA-BP神经网络预测模型拥有更高的预测精度,可用于预测未来时期的住宅工程造价指数。

    Abstract:

    The quota pricing and bill pricing cannot accurately and efficiently determine the construction cost,while the construction cost index can directly reflect the impact of market price change on the construction cost.Accurate and efficient prediction of construction cost index can provide decision support for all parties of project construction and is the basis for government departments to make relevant policies.In order to accurately and efficiently predict the residential construction cost index,combining the functions and advantages of the center approach GM(1,1)model,the mind evolutionary algorithm(MEA) and the BP neural network prediction model, a MEA-BP neural network prediction model based on the center approach GM(1,1) was constructed.First,the relationships between the single cost indexes of labor,material and machine cost and the comprehensive cost index of residential construction were determined through training samples,and then,the future single cost index of the material machine obtained by the center approach GM(1,1) model was used as the input variable of the MEA-BP neural network to obtain the future comprehensive cost index of residential construction. Using MATLAB 2018a software simulation experiment,the residential construction cost index was predicted,and compared with prediction results of the BPneural network.The comparison between MEA-BP and BPneural network prediction model shows that the MEA-BP neural network prediction model has higher prediction accuracy,which can be used to predict the future residential construction cost index.

    参考文献
    相似文献
    引证文献
引用本文

刘伟军,李 念.住宅工程造价指数预测研究[J].长沙理工大学学报(自然科学版),2021,18(4):44-51.
LIU Wei-jun, LI Nian. Research on predictiono fresidential construction cost index[J]. Journal of Changsha University of Science & Technology (Natural Science),2021,18(4):44-51.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-07
  • 出版日期:
文章二维码