长沙理工大学学报(自然科学版)
基于滑动平均与规则决策的卷积神经网络图像分类
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

龚红仿(1968-),男,湖北天门人,长沙理工大学副教授,主要从事嵌入式计算系统、信息物理系统、排队论等方面的研究。E-mail:gonghf@csust.edu.cn

中图分类号:

TP18

基金项目:

国家自然科学基金资助项目(61972055);湖南省教育厅重点项目(18A145)


Convolutional neural network for image classification based on moving average and rule decision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    卷积神经网络(CNN)及其变体模型应用于图像分类技术,因其大量的训练参数导致CNN模型训练过于复杂,增加了成本开销,也易产生梯度消失或梯度爆炸问题。为此,提出滑动平均和规则决策的卷积神经网络模型,并将其应用于图像分类中。将特征映射层与感知器网络(MLP)层结合,利用滑动平均对网络层之间的权重参数进行调整,并对预测目标采用置信度规则策略实现决策优化,提升模型的泛化性能。试验结果表明:滑动平均和规则决策的卷积神经网络模型具有更好的鲁棒性和分类效果。

    Abstract:

    Due to large number of training parameters when applying convolutional neural network (CNN) and its variant model to image classification, the training of them is too complicated to increase the cost and cause the problem of gradient disappearance or gradient explosion. A CNN with moving average and rule decision was proposed and applied to image classification. The feature mapping layer was combined with the multilayer perceptron(MLP) layer, the weight parameters between the network layers were adjusted using the moving average, and the prediction target was optimized using the confidence rule strategy to improve the generalization performance of the model. Experimental results show that the CNN model based on moving average and rule decision has better robustness and classification effect.

    参考文献
    相似文献
    引证文献
引用本文

龚红仿,孙中宇,狄俊珂.基于滑动平均与规则决策的卷积神经网络图像分类[J].长沙理工大学学报(自然科学版),2020,17(3):102-110.
GONG Hong-fang, SUN Zhong-yu, DI Jun-ke. Convolutional neural network for image classification based on moving average and rule decision[J]. Journal of Changsha University of Science & Technology (Natural Science),2020,17(3):102-110.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-28
  • 出版日期:
文章二维码