长沙理工大学学报(自然科学版)
基于GA-BP神经网络的综合管廊投资估算研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

胡庆国(1963-),男,湖南湘乡人,长沙理工大学研究员级高级工程师,主要从事工程管理及工程项目经济评价与分析方面的研究。E-mail:huqg204@126.com

中图分类号:

TU12

基金项目:


Research on investment estimation of comprehensive pipe gallery based on GA-BP neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对综合管廊造价高于传统市政管线设施,其估算具有影响因素众多、非线性等特点,综合考虑管廊长度、截面面积、舱数以及管线入廊个数等10个特征因素,充分利用遗传算法(GA)与BP神经网络模型的优点,建立了基于GA-BP神经网络的预测模型。通过MATLAB仿真试验,对综合管廊的投资估算进行预测研究,并与传统BP神经网络的计算结果进行对比。相关测试表明:检验样本的模拟输出值与样本真实值呈线性吻合,相对误差基本在5%以内,说明该模型预测综合管廊的投资估算比传统BP神经网络模型具有更高的精度和一定的实际应用价值。

    Abstract:

    The cost of comprehensive pipe gallery is higher than that of traditional municipal pipeline facilities, and its investment estimation has the characteristics of having many influence factors, nonlinearity and so on. Considering 10 characteristic factors such as the length of the corridor, the cross-sectional area, the number of cabins, and the number of pipelines, a prediction model was established based on GA-BP neural network, combining with the advantages of Genetic Algorithm (GA) and BP neural network model. Through MATLAB simulation experiments, the investment estimation of comprehensive pipe gallery was predicted and compared with calculating results of traditional BP neural network.The results show that the simulation output value of the test sample is in good linear agreement with the true value of the test sample, and the error is less than 5%. Compared with traditional BP neural network model, GA-BP neural network model has a higher computational accuracy, which indicates that GA-BP neural network model has certain feasibility and effectiveness in engineering applications.

    参考文献
    相似文献
    引证文献
引用本文

胡庆国,蔡孟龙,何忠明.基于GA-BP神经网络的综合管廊投资估算研究[J].长沙理工大学学报(自然科学版),2020,17(2):68-74.
HU Qing-guo, CAI Meng-long, HE Zhong-ming. Research on investment estimation of comprehensive pipe gallery based on GA-BP neural network[J]. Journal of Changsha University of Science & Technology (Natural Science),2020,17(2):68-74.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-28
  • 出版日期:
文章二维码