长沙理工大学学报(自然科学版)
模糊供求条件下高速公路大标段建设项目地材调配决策
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

王首绪(1964-),男,湖北荆州人,长沙理工大学教授,主要从事路桥工程造价管理与经济评价等方面的研究。E-mail:99088472@qq.com

中图分类号:

U491

基金项目:

国家自然科学基金资助项目(71371036)


Land material scheduling decision of large-scale expressway construction project under the condition of fuzzy supply and demand
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决高速公路大标段项目地材调配中周期内供求量不确定、供应点分散、需求点多和调配时间受约束的问题,实现高效率调配,在三级网络结构下建立了以运输总时间、总成本和需求满足率为目标的非线性规划模型。用最可能值法确定了模糊数的权重和置信水平,用平均权重法对模糊数进行了去模糊化。对运输时间和成本动态赋权,提高了决策的科学性。最后以潜江至石首高速公路项目为背景设计仿真算例,并用LINGO软件求解该模型。研究结果表明,该模型能充分考虑地材供求不平衡的两种关系,为调度决策提供了科学依据。

    Abstract:

    In order to solve the problems of uncertain quantity of supply and demand, scattered supply points, many demand points and constrained allocation time in the period of land material scheduling of large section of expressway project, this paper realizes the high efficiency allocation under the three-level network structure. A nonlinear programming model with the premise of demand satisfaction rate and total transportation time and total cost is established. The weight and confidence level of fuzzy numbers are determined by the method of the most probable value, and the triangular fuzzy numbers are treated by the average weight method. Dynamic weight of transportation time and cost to improve the scientific nature of decision-making. Finally, taking Qianjiang to Shishou Expressway Project as the background, a simulation example is designed, and LINGO software is used. The model is solved. The results show that the model can fully consider the two relationships between supply and demand imbalance of ground timber, and provide scientific basis for scheduling decision.

    参考文献
    相似文献
    引证文献
引用本文

王首绪,贺争.模糊供求条件下高速公路大标段建设项目地材调配决策[J].长沙理工大学学报(自然科学版),2019,16(1):36-42.
WANG Shou-xu, HE Zheng. Land material scheduling decision of large-scale expressway construction project under the condition of fuzzy supply and demand[J]. Journal of Changsha University of Science & Technology (Natural Science),2019,16(1):36-42.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-24
  • 出版日期:
文章二维码