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Continuously variable transmission-power coupling

mechanism of hybrid electric vehicle

LIU Zhi-giang, MA Yuan-hui, XIANG Qing-qing
(School of Automotive and Mechanical Engineering, Changsha University of Science and

Technology, Changsha 410114, China)

Abstract: In order to improve the fuel economy of hybrid electric vehicles, a dynamic cou-
pling mechanism of five rod planetary gear train was designed, using double planetary rows
to couple three power sources, in which the engine was connected to the planet frame, the
motor 1 was connected to the sun wheel 1 by the sprocket 1, and the motor 2 was connected
to the sun wheel 2. The power was transferred to driving bridge through the sprocket 2.
The relationship between the rotational speed of the output shaft and that of three power
sources were derived. The analysis of transmission ratio showed that this mechanism could
realize continuously variable transmission in operation while achieving dynamic coupling.
The energy flow analysis was carried out under the operating conditions of engine launch-
ing, starting, accelerating and uphill, cruising. skidding, braking, low speed pure electric
power and backing-up. The Advisor software was used to verify the effects of this coupling
mechanism in a model vehicle under the new European driving condition. The results showed that

the recovery of braking energy was increased by 45 kJ, and the recovery rate was increased by
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3.42%. The fuel economy of the hybrid electric vehicle was improved effectively.

Key words: dynamic coupling mechanism; planetary gear train; hybrid electric vehicle; con-

tinuously variable transmission; transmission ratio; energy flow diagram; simulation
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Fig. 3 Chart of energy flow under different operating conditions
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