长沙理工大学学报(自然科学版)
基于随机森林算法的波浪参数降尺度预报模型
CSTR:
作者:
作者单位:

(1. 中国能源建设集团江苏省电力设计院有限公司,江苏 南京 211102;2. 国网江苏省电力有限公司南通供电分公司,江苏 南通 226000;3. 河海大学 港口海岸与近海工程学院,江苏 南京 210024)

作者简介:

通讯作者:

时健(1987—)(ORCID:0000-0003-0671-6758),男,副教授,主要从事波浪模拟和历史趋势分析的研究。 E-mail:jianshi@hhu.edu.cn

中图分类号:

TV72;P731.33

基金项目:

中国能源建设集团江苏省电力设计院有限公司科技项目(32-JK-2023-026);国家重点研发计划项目(2022YFC3106100)


Wave parameter downscaling forecasting model based on random forest algorithm
Author:
Affiliation:

(1. Jiangsu Power Design Institute Co., Ltd.,China Energy Engineering Group Nanjing 211102, China; 2. Nantong Power Supply Branch of State Grid Jiangsu Electric Power Co., Ltd., Nantong 226000, China; 3. College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】构建精确快速的波浪预报模型,以保障海上活动和海滩安全。【方法】采用中国近海波浪数据库中2009—2018年的波浪数据、风速数据作为训练样本,建立了融合波浪模型和随机森林机器学习算法的波浪降尺度快速预报模型。波浪数值模型采用粗网格计算,通过随机森林算法进行降尺度波浪预报,以实现近海区域波浪要素的快速预报。【结果】对长江口外海2019年全年波浪的有效波高、平均周期和主波向进行了长时间序列的预报,发现所建立的波浪降尺度预报模型能够准确预报全年台风浪和寒潮浪的变化。与传统波浪模型相比,该模型的有效波高预报结果相对误差小于0.2%,计算效率也大幅提高,96 h波浪短期预报由分钟级提高至秒级。【结论】融合波浪模型和随机森林算法的波浪降尺度快速预报模型可提高波浪预报的稳定性、精确度和计算效率,也为利用波浪机器学习算法进行业务化波浪预报提供了新方法。

    Abstract:

    [Purposes] This paper aims to build accurate and fast wave forecasting models to ensure marine activities and beach safety. [Methods] The wave data and wind speed data in the Chinese Wave Database (CWAVE) from 2009 to 2018 were used as training samples to establish a rapid wave downscaling forecasting model that integrated a wave model with a random forest machine learning algorithm. The numerical wave model implemented calculations on a coarse grid, and wave downscaling forecasting was performed through the random forest algorithm, enabling rapid forecasting of wave elements in nearshore areas. [Findings] A long-term series forecasting of significant wave height, average period, and main wave direction for the entire year of 2019 in the offshore area of the Yangtze River Estuary is conducted. It is found that the established wave downscaling forecasting model can accurately predict the changes in typhoon waves and cold waves throughout the year. The relative error of the significant wave height calculated by the model is within 0.2% compared to the calculation results of the traditional wave model, the calculation efficiency is significantly improved, with the 96-hour short-term wave forecasting advancing from a minute to a second level. [Conclusions] The rapid wave downscaling forecasting model that integrates a wave model with the random forest algorithm can enhance the stability, accuracy, and calculation efficiency of wave forecasting, providing a new method for the operational application of wave machine learning algorithms in wave forecasting.

    参考文献
    相似文献
    引证文献
引用本文

王晓惠,施渊,沈旭伟,等.基于随机森林算法的波浪参数降尺度预报模型[J].长沙理工大学学报(自然科学版),2025,22(1):62-70.
WANG Xiaohui, SHI Yuan, SHEN Xuwei, et al. Wave parameter downscaling forecasting model based on random forest algorithm[J]. Journal of Changsha University of Science & Technology (Natural Science),2025,22(1):62-70.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-20
  • 出版日期:
文章二维码