长沙理工大学学报(自然科学版)
数据与机理融合的盾构土压预测与协同优化
CSTR:
作者:
作者单位:

(1.江苏大学 农业工程学院,江苏 镇江 212013;2.江苏大学 机械工程学院,江苏 镇江 212013;3.江苏大学 电气信息工程学院,江苏 镇江 212013;4.大连理工大学 机械学院,辽宁 大连 116024)

作者简介:

通讯作者:

石茂林(1990—)(ORCID:0000-0002-2599-6401)男,助理研究员,主要从事隧道掘进机(盾构)大数据与优化设计方面的研究。E-mail:maolin@ujs.edu.cn

中图分类号:

U455.43;TP181;TH122

基金项目:

国家重点研发计划项目(2022YFC3802304);博士后基金面上项目(2022M711388);特殊服役环境的智能装备制造国际科技合作基地开放基金资助项目(ISTC2022KF03);江苏大学高级人才启动基金资助项目(20JDG068)


Earth pressure prediction and collaborative optimization of shield machine based on integration of data and mechanism
Author:
Affiliation:

(1.School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; 2. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China; 3. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; 4. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】针对土压平衡盾构实测数据样本分布不均导致土压预测模型精度不高的问题,引入机理模型数据,构建数据与机理融合的盾构土压预测模型。【方法】首先,基于岩土力学建立盾构土压的机理模型,利用多种多保真度代理模型,将实测数据与机理模型数据进行融合,构建土压预测模型。然后,通过对比分析确定最优的盾构土压预测模型,实现实测数据与机理模型的优势互补。最后,提出了盾构土压多目标协同优化策略,实现了盾构多点土压的协同优化。【结果】盾构土压预测结果表明,相比于仅基于实测数据的预测模型,机理模型数据的引入能够大幅提升预测精度,预测结果的最优决定系数由0.941提升至0.977;盾构多点土压优化试验结果表明,优化后土压的整体均方根误差显著降低,降幅约为14.47%。【结论】机理模型数据的引入能够提高盾构土压预测模型的精度。不同点位土压的变化幅度在经过协同优化后大幅缩小,为盾构土压的预测与优化提供了新方法。

    Abstract:

    [Purposes] In order to solve the problem that the measured sample data of earth pressure balance of shield machines are unevenly distributed, resulting in low accuracy of the earth pressure prediction model, mechanism model data were introduced to construct an earth pressure prediction model of shield machines based on the integration of data and mechanism. [Methods] The mechanism model of the earth pressure of shield machines was established based on geotechnical mechanics. The earth pressure prediction model was established by integrating the mechanism model data and the measured data using several multi-fidelity surrogate models. Then, the complementary advantages of the measured data and the mechanism model data were fused by comparing the optimal earth pressure prediction model of shield machines. Finally, a multi-objective collaborative optimization strategy for the earth pressure of shield machines was proposed, which realized the collaborative optimization of the earth pressure of shield machines in different directions. [Findings] The prediction results of the earth pressure of shield machines show that compared with the prediction model based only on measured data, the introduction of the mechanism model data greatly improves the prediction accuracy, and the optimal coefficient of determination of prediction results is increased from 0.941 to 0.977. The optimization test results of the earth pressure of shield machines in different directions show that the overall root mean square error of the optimized earth pressure is significantly reduced, with a decrease of about 14.47%. [Conclusions] Introducing mechanism model data can improve the accuracy of the earth pressure prediction model of shield machines. The variation range of earth pressure in different directions has been greatly reduced after collaborative optimization, which provides new methods for earth pressure prediction and collaborative optimization of shield machines.

    参考文献
    相似文献
    引证文献
引用本文

石茂林,邓梦楠,张丽,等.数据与机理融合的盾构土压预测与协同优化[J].长沙理工大学学报(自然科学版),2025,22(1):49-61.
SHI Maolin, DENG Mengnan, ZHANG Li, et al. Earth pressure prediction and collaborative optimization of shield machine based on integration of data and mechanism[J]. Journal of Changsha University of Science & Technology (Natural Science),2025,22(1):49-61.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-20
  • 出版日期:
文章二维码